Drug discovery and development and precision medicine for Autism Spectrum Disorder – current state
https://doi.org/10.33700/jhrs.3.1.109
Keywords:
autism, drug development, biomarkers, multi-omics, precision medicineAbstract
Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder/condition. Medical interven-tions for this condition are mainly pharmacological, and generally not tailored to precisely address the specific underlying issues in each ASD individual. Despite the extensive efforts to develop new or repurpose existing drugs over the decades, the range of medications that address this condition remains very limited.
Findings: Progress in drug development has been hindered by research design limitations and the complex, het-erogeneous nature of the ASD itself. Therefore, this article first discusses preclinical and clinical studies aimed at finding effective treatments, highlighting their shortcomings and potential solutions. It then delves into the com-plexity of ASD and the implications for drug development, such as its phenotypic and genetic heterogeneity and multifactorial etiology, and unclear diagnostic boundaries with other developmental disorders.
Exploiting the advantages of new technologies, current autism treatment research is steering towards prioritizing genetic and molecular data over phenotypic data, emphasizing the need for biologically meaningful and quantifi-able biomarkers to identify biologically defined and clinically actionable subgroups within ASD, amenable to specific treatments.
The critical role of precision medicine is underscored as a comprehensive, fundamental approach to biology-based drug development and personalized treatments. Achieving this goal requires an integrated analysis of multilayered data, utilizing multi-omics, systems biology, and machine learning approaches.
Conclusion: Lastly, the article provides a brief overview of current initiatives and private sector efforts focusing on precision medicine treatments for neurodevelopmental disorders, highlighting their progress in developing drugs through this innovative approach.
Downloads
Metrics
References
AIMS-2-TRIALS (2024). https://www.aims-2-trials.eu/. Accessed: May, 2024.
Aishworiya, R., Valica, T., Hagerman, R., & Re-strepo, B. (2022). An Update on Psycho-pharmacological Treatment of Autism Spec-trum Disorder. Neurotherapeutics: the jour-nal of the American Society for Experimental NeuroTherapeutics, 19(1), 248–262. https://doi.org/10.1007/s13311-022-01183-1
Arnett, A. B., Trinh, S., & Bernier, R. A. (2019). The state of research on the genetics of au-tism spectrum disorder: methodological, clinical and conceptual progress. Current opinion in psychology, 27, 1–5. https://doi.org/10.1016/j.copsyc.2018.07.004
Baldassari, S., Musante, I., Iacomino, M., Zara, F., Salpietro, V., & Scudieri, P. (2020). Brain Or-ganoids as Model Systems for Genetic Neu-rodevelopmental Disorders. Frontiers in cell and developmental biology, 8, 590119. https://doi.org/10.3389/fcell.2020.590119
Baribeau, D., & Anagnostou, E. (2022). Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacology & therapeutics, 230, 107939. https://doi.org/10.1016/j.pharmthera.2021.107939
Beversdorf, D. Q., & MISSOURI AUTISM SUM-MIT CONSORTIUM (2016). Phenotyping, Etiological Factors, and Biomarkers: Toward Precision Medicine in Autism Spectrum Dis-orders. Journal of developmental and behav-ioral pediatrics: JDBP, 37(8), 659–673. https://doi.org/10.1097/DBP.0000000000000351
Beversdorf, D. Q., Anagnostou, E., Hardan, A., Wang, P., Erickson, C. A., Frazier, T. W., & Veenstra-VanderWeele, J. (2023). Editorial: Precision medicine approaches for heteroge-neous conditions such as autism spectrum disorders (The need for a biomarker explora-tion phase in clinical trials - Phase 2m). Frontiers in psychiatry, 13, 1079006. https://doi.org/10.3389/fpsyt.2022.1079006
Cirnigliaro, M., Chang, T. S., Arteaga, S. A., Pérez-Cano, L., Ruzzo, E. K., Gordon, A., Bicks, L. K., Jung, J. Y., Lowe, J. K., Wall, D. P., & Geschwind, D. H. (2023). The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proceedings of the Na-tional Academy of Sciences of the United States of America, 120(31), e2215632120. https://doi.org/10.1073/pnas.2215632120
Clayton P. T. (2020). The effectiveness of correct-ing abnormal metabolic profiles. Journal of inherited metabolic disease, 43(1), 2–13. https://doi.org/10.1002/jimd.12139
ClinicalTrials.gov (2024). https://clinicaltrials.gov/. Accessed: May, 2024.
Darville, H., Poulet, A., Rodet-Amsellem, F., Cha-trousse, L., Pernelle, J., Boissart, C., Héron, D., Nava, C., Perrier, A., Jarrige, M., Cogé, F., Millan, M. J., Bourgeron, T., Peschanski, M., Delorme, R., & Benchoua, A. (2016). Human Pluripotent Stem Cell-derived Cortical Neu-rons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syn-drome. EBioMedicine, 9, 293–305. https://doi.org/10.1016/j.ebiom.2016.05.032
Díaz-Caneja, C. M., State, M. W., Hagerman, R. J., Jacquemont, S., Marín, O., Bagni, C., Um-bricht, D., Simonoff, E., de Andrés-Trelles, F., Kaale, A., Pandina, G., Gómez-Mancilla, B., Wang, P. P., Cusak, J., Siafis, S., Leucht, S., Parellada, M., Loth, E., Charman, T., Bui-telaar, J. K., … Arango, C. (2021). A white paper on a neurodevelopmental framework for drug discovery in autism and other neu-rodevelopmental disorders. European neuro-psychopharmacology: The journal of the Eu-ropean College of Neuropsychopharmacolo-gy, 48, 49–88. https://doi.org/10.1016/j.euroneuro.2021.02.020
European Union Clinical Trials Register. (2024). https://www.clinicaltrialsregister.eu/. Ac-cessed: May, 2024.
Gomez-Mancilla, B., Erickson, C., Pedapati, E. V., Painbeni, E., Bonfils, G., Schmitt, L. M., ... & Durham, L. A. (2024). Safety, Tolerability and EEG-Based Target Engagement of STP1 (PDE3, 4 Inhibitor and NKCC1 Antagonist), in a Randomized Clinical Trial in a Subgroup of Patients with ASD. Preprint from Pre-prints.org, 26 Mar 2024 https://doi.org/10.20944/preprints202403.1581.v1
Iakoucheva, L. M., Muotri, A. R., & Sebat, J. (2019). Getting to the Cores of Autism. Cell, 178(6), 1287–1298. https://doi.org/10.1016/j.cell.2019.07.037
King, B. H., Dukes, K., Donnelly, C. L., Sikich, L., McCracken, J. T., Scahill, L., Hollander, E., Bregman, J. D., Anagnostou, E., Robinson, F., Sullivan, L., & Hirtz, D. (2013). Baseline fac-tors predicting placebo response to treatment in children and adolescents with autism spectrum disorders: a multisite randomized clinical trial. JAMA pediatrics, 167(11), 1045–1052. https://doi.org/10.1001/jamapediatrics.2013.2698
Koceski, A., & Trajkovski, V. (2021). Health sta-tus of people with autism spectrum disorder. Advances in Autism, 8(3), 252-263. https://doi.org/10.1108/AIA-01-2021-0005
Kostić, A., & Buxbaum, J. D. (2021). The promise of precision medicine in autism. Neuron, 109(14), 2212–2215. https://doi.org/10.1016/j.neuron.2021.06.025
Lombardo, M. V., Lai, M. C., & Baron-Cohen, S. (2019). Big data approaches to decomposing heterogeneity across the autism spectrum. Molecular psychiatry, 24(10), 1435–1450. https://doi.org/10.1038/s41380-018-0321-0
Loth E. (2021a). Are we ready for precision medi-cine for Autism? And who wants it?. Europe-an neuropsychopharmacology: the journal of the European College of Neuropsychophar-macology, 48, 32–33. https://doi.org/10.1016/j.euroneuro.2021.03.009
Loth, E., Ahmad, J., Chatham, C., López, B., Carter, B., Crawley, D., Oakley, B., Hayward, H., Cooke, J., San José Cáceres, A., Bzdok, D., Jones, E., Charman, T., Beckmann, C., Bourgeron, T., Toro, R., Buitelaar, J., Murphy, D., & Dumas, G. (2021b). The meaning of significant mean group differences for bi-omarker discovery. PLoS computational bi-ology, 17(11), e1009477. https://doi.org/10.1371/journal.pcbi.1009477
McCracken, J. T., Anagnostou, E., Arango, C., Dawson, G., Farchione, T., Mantua, V., McPartland, J., Murphy, D., Pandina, G., Veenstra-VanderWeele, J., & ISCTM/ECNP ASD Working Group (2021). Drug develop-ment for Autism Spectrum Disorder (ASD): Progress, challenges, and future directions. European neuropsychopharmacology: the journal of the European College of Neuro-psychopharmacology, 48, 3–31. https://doi.org/10.1016/j.euroneuro.2021.05.010
Mesleh, A. G., Abdulla, S. A., & El-Agnaf, O. (2021). Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spec-trum Disorder for Biomarkers Discovery and Patient Stratification. Journal of personal-ized medicine, 11(1), 41. https://doi.org/10.3390/jpm11010041
Ortuño-Costela, M. D. C., Cerrada, V., García-López, M., & Gallardo, M. E. (2019). The Challenge of Bringing iPSCs to the Patient. International journal of molecular sciences, 20(24), 6305. https://doi.org/10.3390/ijms20246305
Pérez-Cano, L., Azidane Chenlo, S., Sabido-Vera, R., Sirci, F., Durham, L., & Guney, E. (2023). Translating precision medicine for autism spectrum disorder: A pressing need. Drug discovery today, 28(3), 103486. https://doi.org/10.1016/j.drudis.2023.103486
Pérez-Cano, L., Boccuto, L., Sirci, F., Hidalgo, J. M., Valentini, S., Bosio, M., Liogier D'Ardhuy, X., Skinner, C., Cascio, L., Sri-kanth, S., Jones, K., Buchanan, C. B., Skinner, S. A., Gomez-Mancilla, B., Hyvelin, J. M., Guney, E., & Durham, L. (2024). Characteri-zation of a Clinically and Biologically De-fined Subgroup of Patients with Autism Spectrum Disorder and Identification of a Tailored Combination Treatment. Biomedi-cines, 12(5), 991. https://doi.org/10.3390/biomedicines12050991
Persico, A. M., Ricciardello, A., Lamberti, M., Turriziani, L., Cucinotta, F., Brogna, C., Vi-tiello, B., & Arango, C. (2021). The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part I: The past and the present. Progress in neuro-psychopharmacology & biological psychia-try, 110, 110326. https://doi.org/10.1016/j.pnpbp.2021.110326
POND (2024). https://pond-network.ca/. Ac-cessed: May 2024.
Provenzani, U., Fusar-Poli, L., Brondino, N., Damiani, S., Vercesi, M., Meyer, N., Rocchet-ti, M., & Politi, P. (2020). What are we target-ing when we treat autism spectrum disorder? A systematic review of 406 clinical trials. Autism: the international journal of research and practice, 24(2), 274–284. https://doi.org/10.1177/1362361319854641
Ramaswami, G., & Geschwind, D. H. (2018). Ge-netics of autism spectrum disorder. Hand-book of clinical neurology, 147, 321–329. https://doi.org/10.1016/B978-0-444-63233-3.00021-X
Rao, S. R., Kostic, A., Baillargeon, P., Fernandez-Vega, V., de Anda, M. R., Fletcher, K., Shu-mate, J., Scampavia, L., Buxbaum, J. D., & Spicer, T. P. (2022). Screening for modula-tors of autism spectrum disorder using in-duced human neurons. SLAS discovery: ad-vancing life sciences R & D, 27(2), 128–139. https://doi.org/10.1016/j.slasd.2022.01.004
Ruzzo, E. K., Pérez-Cano, L., Jung, J. Y., Wang, L. K., Kashef-Haghighi, D., Hartl, C., Singh, C., Xu, J., Hoekstra, J. N., Leventhal, O., Leppä, V. M., Gandal, M. J., Paskov, K., Stockham, N., Polioudakis, D., Lowe, J. K., Prober, D. A., Geschwind, D. H., & Wall, D. P. (2019). In-herited and De Novo Genetic Risk for Au-tism Impacts Shared Networks. Cell, 178(4), 850–866.e26. https://doi.org/10.1016/j.cell.2019.07.015
Satterstrom, F. K., Kosmicki, J. A., Wang, J., Breen, M. S., De Rubeis, S., An, J. Y., Peng, M., Collins, R., Grove, J., Klei, L., Stevens, C., Reichert, J., Mulhern, M. S., Artomov, M., Gerges, S., Sheppard, B., Xu, X., Bhaduri, A., Norman, U., Brand, H., … Buxbaum, J. D. (2020). Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell, 180(3), 568–584.e23. https://doi.org/10.1016/j.cell.2019.12.036
Siafis, S., Çıray, O., Schneider-Thoma, J., Bighelli, I., Krause, M., Rodolico, A., Ceraso, A., Deste, G., Huhn, M., Fraguas, D., Mavridis, D., Charman, T., Murphy, D. G., Parellada, M., Arango, C., & Leucht, S. (2020). Placebo response in pharmacological and dietary supplement trials of autism spectrum disor-der (ASD): systematic review and meta-regression analysis. Molecular autism, 11(1), 66. https://doi.org/10.1186/s13229-020-00372-z
Szatmari, P., Charman, T., & Constantino, J. N. (2012). Into, and out, of the "Valley of Death": research in autism spectrum disor-ders. Journal of the American Academy of Child and Adolescent Psychiatry, 51(11), 1108–1112. https://doi.org/10.1016/j.jaac.2012.08.027
Talantseva, O. I., Romanova, R. S., Shurdova, E. M., Dolgorukova, T. A., Sologub, P. S., Tito-va, O. S., Kleeva, D. F., & Grigorenko, E. L. (2023). The global prevalence of autism spectrum disorder: A three-level meta-analysis. Frontiers in psychiatry, 14, 1071181. https://doi.org/10.3389/fpsyt.2023.1071181
Trajkovski, V. (2024). Association between Au-tism Spectrum Disorder and Cancer-a Re-view from the Literature. Journal of Health and Rehabilitation Sciences, 3(1), 1-7. https://doi.org/10.33700/jhrs.3.1.103
Trajkovski, V., Petlichkovski, A., Efinska-Mladenovska, O., Trajkov, D., Arsov, T., Stre-zova, A., ... & Spiroski, M. (2008). Higher plasma concentration of food-specific anti-bodies in persons with autistic disorder in comparison to their siblings. Focus on Au-tism and Other Developmental Disabilities, 23(3), 176-185. https://doi.org/10.1177/1088357608320413
Veenstra-VanderWeele, J., & Warren, Z. (2015). Intervention in the context of development: pathways toward new treatments. Neuropsy-chopharmacology: Official publication of the American College of Neuropsychophar-macology, 40(1), 225–237. https://doi.org/10.1038/npp.2014.232
Villa, C., Combi, R., Conconi, D., & Lavitrano, M. (2021). Patient-Derived Induced Pluripotent Stem Cells (iPSCs) and Cerebral Organoids for Drug Screening and Development in Au-tism Spectrum Disorder: Opportunities and Challenges. Pharmaceutics, 13(2), 280. https://doi.org/10.3390/pharmaceutics13020280
Vukovic, V., Banda, A., Carneiro, L., Dogan, S., Knapp, P., McMahon, M., Milutinovic, D., Soylar, P., Sykes, K., Tosun, B., Yava, A., Trajkovski, V., Wells, J., & Cuypers, M. (2023). The importance of cancer prevention policies to inform and guide preventative and screening measures for people with in-tellectual disabilities: The COST project "Cancer- Understanding Prevention in Intel-lectual Disabilities". Journal of intellectual disabilities: JOID, 17446295231213752. Advance online publication. https://doi.org/10.1177/17446295231213752
Wang P. (2019). The need for objective outcome measures to advance intervention research in autism. SFARI. https://www.sfari.org/2019/12/17/the-need-for-objective-outcome-measures-to-advance-intervention-research-in-autism/. Accessed: May 2024.
Wells, J. (2023). A COST Action to address chal-lenges facing people with intellectual disa-bilities accessing cancer prevention and re-sponse services across Europe – Introducing CUPID - Cancer- Understanding Prevention in Intellectual Disabilities. Journal of Health and Rehabilitation Sciences, 1(1), 12–16. https://doi.org/10.33700/jhrs.1.1.46
Zhao, X., & Bhattacharyya, A. (2018). Human Models Are Needed for Studying Human Neurodevelopmental Disorders. American journal of human genetics, 103(6), 829–857. https://doi.org/10.1016/j.ajhg.2018.10.009
Downloads
Published
Versions
- 20.06.2024 (2)
- 15.06.2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Irena Stojanovska
This work is licensed under a Creative Commons Attribution 4.0 International License.